如图,棱柱ABCD—的所有棱长都为2,
,侧棱
与底面ABCD的所成角为60°,
⊥平面ABCD,
为
的中点.
(1)证明:BD⊥;
(2)证明:平面
;
(3)求二面角DC的余弦值.
在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.
已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.
(1)求证:(a-b)⊥c;
(2)若|ka+b+c|>1 (k∈R),求k的取值范围.
已知点G为△ABC的重心,过G作直线与AB、AC两边分别交于M、N两点,且=x
,
=y
,求
+
的值.
在△OAB中,延长BA到C,使AC=BA,在OB上取点D,使DB=OB.DC与OA交于E,设
=a,
=b,用a,b表示向量
,
.
如图所示,在△ABO中,=
,
=
,AD与BC相交于点M,设
=a,
=b.试用a和b表示向量
.