如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F. 求证:
(1);
(2)
(本小题满分14分)已知数列{}中,
(n≥2,
),
(1)若,数列
满足
(
),求证数列{
}是等差数列;
(2)若,求数列{
}中的最大项与最小项,并说明理由;
(3)(理做文不做)若,试证明:
.
(本小题满分12分)某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.
(本小题满分12分)已知数列,其中
是首项为1,公差为1的等差数列;
是公差为
的等差数列;
是公差为
的等差数列(
).
(1)若,求
;(2)试写出
关于
的关系式,并求
的取值范围;(3)续写已知数列,使得
是公差为
的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率;
(II)至少有1人选择的项目属于民生工程的概率.
(2009重庆卷文)(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分)
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和
,且各株大树是否成活互不影响.求移栽的4株大树中:
(Ⅰ)至少有1株成活的概率;
(Ⅱ)两种大树各成活1株的概率.