如图,在四棱锥中,底面
为直角梯形,且
,
,侧面
底面
. 若
.
(1)求证:平面
;
(2)侧棱上是否存在点
,使得
平面
?若存在,指出点
的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.
(本小题满分14分)已知函数满足
,当
时
;当
时
.
(Ⅰ)求函数在(-1,1)上的单调区间;
(Ⅱ)若,求函数
在
上的零点个数.
(本小题满分14分)已知半径为的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于
两点,求实数
的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.
(本小题满分14分)如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
(本小题满分14分)函数。
(1)求的周期;(2)
在
上的减区间;
(3)若,
,求
的值。
(本小题满分12分)如图,函数y=2sin(x+φ) x∈R , 其中0≤φ≤
的图象与y轴交于点(0,1).
(Ⅰ)求φ的值;
(Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求