问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便、快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算194×206.
解:194×206-(200-6)(200+6) ①
=2002-62 ②
=39964
(1)例题求解过程中,从第①步到第②步的变形是利用 (填乘法公式的名称);
(2)用简便方法计算:9×11×101.
问题2:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2xa-3a2=(a2+2ax+a2)-a2-3a2
=(x+a)2-4a2
=(x+a)2-(2a)2
=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”,利用“配方法”,解决下列问题:
(1)分解因式:a2-6a+8;
(2)若x2-2xy+2y2+2y+1=0,求xy的值.
如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求线段AE的长.
(1)解不等式组 (2)解方程:
(1)计算: sin60°+|1﹣|+
﹣1(2)化简:
面给出的三块正方形纸板的边长都是60cm,请分别按下列要求设计一种剪裁方法,折叠成一个礼品包装盒(纸板的厚度忽略不计).要求尽可能多地利用纸板,用虚线表示你的设计方案,并把剪裁线用实线标出.
(1)包装礼盒的六个面由六个矩形组成(如图1),请画出对应的设计图.
图1
(2)包装礼盒的上盖由四个全等的等腰直角三角形组成(如图2),请画出对应的设计图.
图2
(3)包装礼盒的上盖是双层的,由四个全等的矩形组成(如图3),请画出对应的设计图.
图3
学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个内角的度数分别为x°、y°和z°,若满足,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=,AC=1+
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.