(本小题12分)
已知数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2,n∈N),a1=。
1) 求证:数列{}为等差数列。并求数列{an}的通项公式an。
2) 记数列{bn}的通项公式为bn=,Tn=b1+b2 +…+bn,求Tn的值。
(本小题10分)
已知函数f(x)=cos(-2x)+2cos2x
1)求f(x)的最大值,并写出使f(x)取得最大值时对应的x的集合.
2)若把函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,求函数g(x)的单调递减区间。
(本小题满分14分)
某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析.
(ⅰ)列出所有可能的抽取结果;
(ⅱ)求抽取的2所学校均为小学的概率.
(本小题满分12分)如下图,给出了一个程序框图,其作用是输入的值,输出相应的
的值,
(I)请指出该程序框图所使用的逻辑结构;
(Ⅱ)若视为自变量,
为函数值,试写出函数
的解析式;
(Ⅲ)若要使输入的的值与输出的
的值相等,则输入
的值的集合为多少?
(本小题满分12分)
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作四次试验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?