从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下图所示:
(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分(平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和);
(2)若用分层抽样的方法从分数在和
的学生中共抽取
人,该
人中成绩在
的有几人?
(3)在(2)中抽取的人中,随机抽取
人,求分数在
和
各
人的概率.
已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上截距相等,求切线的方程;
(2)若为圆C上任意一点,求
的最大值与最小值;
(3)从圆C外一点P(x,y)向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求当|PM|最小时的点P的坐标。
从名男生和
名女生中任选
人参加演讲比赛,
①求所选人都是男生的概率;
②求所选人恰有
名女生的概率;
③求所选人中至少有
名女生的概率。
如图,长方体中,
,
,点
为
的中点。
(1)求证:直线∥平面
;
(2)求证:平面平面
;
己知圆C:(x-xo)2+(y-y0)2=R2(R>0)与y轴相切,圆心C在直线l:x-3y=0上,且圆C截直线m:x-y=0所得的弦长为2,求圆C方程.
下表给出了从某校500名12岁男生中用简单随机抽样得出的120人的身高资料(单位:厘米):
分组 |
人数 |
频率 |
[122,126) |
5 |
0.042 |
[126,130) |
8 |
0.067 |
[130,134 ) |
10 |
0.083 |
[134,138) |
22 |
0.183 |
[138,142) |
y |
|
[142,146) |
20 |
0.167 |
[146,150) |
11 |
0.092 |
[150,154) |
x |
0.050 |
[154,158) |
5 |
0.042 |
合计 |
120 |
1.00 |
(1)在这个问题中,总体是什么?并求出x与y的值;
(2)求表中x与y的值,画出频率分布直方图及频率分布折线图;
(3)试计算身高在146~154cm的总人数约有多少?