甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,
甲运动员
射击环数 |
频数 |
频率 |
7 |
10 |
0.1 |
8 |
10 |
0.1 |
9 |
![]() |
0.45 |
10 |
35 |
![]() |
合计 |
100 |
1 |
乙运动员
射击环数 |
频数 |
频率 |
7 |
8 |
0.1 |
8 |
12 |
0.15 |
9 |
![]() |
|
10 |
0.35 |
|
合计 |
80 |
1 |
若将频率视为概率,回答下列问题,
(1)求甲运动员击中10环的概率
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求
的分布列及
.
设的内角
所对的边分别为
且
.
(1)求角的大小;
(2)若,求
的周长
的取值范围.
设函数(1)求函数
; (2)若存在常数k和b,使得函数
对其定义域内的任意实数
分别满足
则称直线
的“隔离直线”.试问:函数
是否存在“隔离直线”?若存在,求出“隔离直线”方程,不存在,请说明理由.
已知定点C(-1,0)及椭圆x2+3y2=5,过点C的动直线与椭圆相交于A,B两点.(1)若线段AB中点的横坐标是-,求直线AB的方程;(2)在x轴上是否存在点M,使
为常数?若存在,求出点M的坐标;若不存在,请说明理由.
(本小题满分12分)已知数列的前n项之和为
.
(1)求数列的通项公式; (2)设
,求数列
的前n项和Tn;
(3)求使不等式对一切n∈N*均成立的最大实教p.