游客
题文

是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?

科目 数学   题型 解答题   难度 中等
知识点: 第二数学归纳法
登录免费查看答案和解析
相关试题

(本题满分12 分)
已知数列为等比数列,且首项为,公比为,前项和为.
(Ⅰ)试用表示前项和
(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。

(本题满分12 分)
(1)计算
(2)已知,求sin的值。

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-对称,且f′(1)=0.
(1)求实数a,b的值;
(2)讨论函数f(x)的单调性,并求出单调区间 。

如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(1)求证:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求点C到平面PBD的距离.

(本题满分13分)
已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号