游客
题文

已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

科目 数学   题型 解答题   难度 较难
知识点: 圆内接四边形的性质 相似多边形的性质
登录免费查看答案和解析
相关试题

(1)阅读理解:
如图,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的大小.
思路点拨:考虑到PA,PB,PC不在一个三角形中,采用转化与化归的数学思想,可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时△ACP′≌△ABP,这样,就可以利用全等三角形知识,结合已知条件,将三条线段的长度转化到一个三角形中,从而求出∠APB的度数。请你写出完整的解题过程.
(2)变式拓展:请你利用第(1)题的解答思想方法,解答下面问题:
已知如图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,,求EF的大小.

11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?

已知:如图AC=BD,AB=DC。

证明:(1)∠A=∠D;(2)OB=OC

如图,A、C两乡镇到水渠边的距离分别为AB=2km,CD=4km,且BD=8km。

(1)在水渠边上要建一个水电站P,使得PA+PC最小,请在图中画出P的位置(保留作图痕迹),不必说明理由。
(2)求出PA+PC最小值。

已知:如图,∠ACB=∠ADB=90°,AC=AD,E是AB上任意一点。

(1)BC与BD相等吗?试说明理由。
(2)CE=DE吗?为什么?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号