给出四个等式:
1=1
1-4=-(1+2)
1-4+9=1+2+3
1-4+9-16=-(1+2+3+4)
……
(1)写出第5,6个等式,并猜测第n(n∈N*)个等式
(2)用数学归纳法证明你猜测的等式.
是否存在一个等比数列{an},使其满足下列三个条件:
(1)a1+a6=11且a3a4=;
(2)an+1>an(n∈N*);
(3)至少存在一个m(m∈N*,m>4),使am-1,
,am+1+
依次成等差数列.
若存在,写出数列的通项公式;若不存在,请说明理由.
已知{an}是各项都为正数的等比数列,数列{bn}满足bn=[lga1+lga2+lga3+…+lg(kan)],问是否存在正数k,使得{bn}成等差数列?若存在,求出k的值;若不存在,请说明理由.
有纯酒精a L(a>1),从中取出1 L,再用水加满,然后再取出1 L,再用水加满,如此反复进行.问第九次和第十次共取出多少升纯酒精?
已知数列{an}的前n项和Sn=2an+1,求证:数列{an}是等比数列,并求出通项公式.
已知四个数,前三个数成等差数列,后三个数成等比数列,中间两数之积为16,前后两数之积为-128,求这四个数.