某汽车厂生产的A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆)
|
轿车A |
轿车B |
轿车C |
舒适性 |
800 |
450 |
200 |
标准型 |
100 |
150 |
300 |
(Ⅰ)在这个月生产的轿车中,用分层抽样的方法抽取n辆,其中有A类轿车45辆,求n的值;
(Ⅱ)在C类轿车中,用分层抽样的方法抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从A类舒适型轿车中抽取10辆,经检测它们的得分如下:,8.7,9.3,8.2,9.4,8.6,9.2,9.6,9.0,8.4,8.6,把这10辆轿车的得分看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6的概率.
设函数,
(Ⅰ)讨论函数的单调性
(Ⅱ)如果存在,使得
成立,求满足上述条件的最大整数
(Ⅲ)如果对任意的,都有
成立,求实数
的取值范围
已知数列中
,数列
中
,其中
(Ⅰ)求证:数列是等差数列
(Ⅱ)设是数列
的前n项和,求
(Ⅲ)设是数列
的前n 项和,求证:
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=,PA=
,∠ABC=120°,G为线段PC上的点
(Ⅰ)证明:BD⊥面PAC
(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值
(Ⅲ)若G满足PC⊥面BGD,求的值.
已知函数
(1)求的最小正周期
(2)在中,
分别是
A、
B、
C的对边,若
,
,
的面积为
,求
的值
(本小题满分14分)设函数f(x)=(x–1)2+alnx,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y–1=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)有两个极值点x1,x2且x1<x2,求证:f(x2)>–
ln2.