为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
(参考公式:,其中
)
已知函数
(1)求的值;
(2)求函数的最小正周期及单调递减区间
已知函数(
为常数,
且
)的图象过点
.
(1)求实数的值;
(2)若函数,试判断函数
的奇偶性,并说明理由
已知函数,其中
.
(Ⅰ)讨论的单调性;
(Ⅱ)设曲线与
轴正半轴的交点为P,曲线在点P处的切线方程为
,求证:对于任意的正实数
,都有
;
(Ⅲ)若关于的方程
有两个正实根
,求证:
.
已知椭圆的左焦点为
,离心率为
,点M在椭圆上且位于第一象限,直线
被圆
截得的线段的长为c,
.
(Ⅰ)求直线的斜率;
(Ⅱ)求椭圆的方程;
(Ⅲ)设动点在椭圆上,若直线
的斜率大于
,求直线
(
为原点)的斜率的取值范围.
已知数列满足
,且
成等差数列.
(Ⅰ)求的值和
的通项公式;
(Ⅱ)设,求数列
的前
项和.