设椭圆C:
的两个焦点为F1、F2,点B1为其短轴的一个端点,满足
,
。
(1)求椭圆C的方程;
(2)过点M
做两条互相垂直的直线l1、l2设l1与椭圆交于点A、B,l2与椭圆交于点C、D,求的最小值。
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,直线
与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
的取值范围;
定义在R上的奇函数
有最小正周期4,且
时,
。
(1)求
在
上的解析式;
(2)判断
在
上的单调性,并给予证明;
(3)当
为何值时,关于方程
在
上有实数解?
我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值
万元与投入
万元之间满足:
为常数。当
万元时,
万元;
当
万元时,
万元。(参考数据:
)
(1)求
的解析式;
(2)求该景点改造升级后旅游利润
的最大值。(利润=旅游增加值-投入)。
已知函数
.
(1)若函数
的定义域和值域均为
,求实数
的值;
(2)若
在区间
上是减函数,且对任意的
,总有
,求实数
的取值范围;
已知 
(1)若
=l,求
;
(2)若
,求实数
的取值范围.