在如图的方格纸中,每个小正方形的边长都为l,△ABC与△A1B1C1构成的图形是中心对称图形.
(1)画出此中心对称图形的对称中心O;
(2)画出将△A1B1C1,沿直线DE向上平移5格得到的△A2B2C2;
(3)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(直接写出答案)
学校准备添置一批计算机.
方案1:到商家直接购买,每台需要7000元;
方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.
(1)分别写出y1、y2的函数解析式;
(2)当学校添置多少台计算机时,两种方案的费用相同?
(3)若学校需要添置计算机50台,那么采用哪一种方案较省钱?说说你的理由
如图:
①写出A、B、C三点的坐标.A () B() C()
②若△ABC各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点 A′、B′、C′,并依次连接这三个点,所得的△A′B′C′与原△ABC有怎样的位置关系?
③在②的基础上,纵坐标都不变,横坐标都乘以-1在同一坐标系中描出对应的点A″、B″、C″,并依次连接这三个点,所得的△A″B″C″与原△ABC有怎样的位置关系?
已知一次函数的图象如图所示.
(1)求该一次函数的解析式;
(2)直接写出:当时,
的取值范围
如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四边形ABCD的面积.
如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k (k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M、N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M、N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.