(本小题满分13分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。
(1)若抽取后又放回,抽3次,①分别求恰2次为红球的概率及抽全三种颜色球的概率;②求抽到红球次数的数学期望.
(2)若抽取后不放回,抽完红球所需次数为的分布列及期望.
己知函数
(1)若是
的极值点,求
在
上的最大值;
(2)在(1)的条件下,是否存在实数b,使得函数的图象与函数
的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
如图所示,和
是边长为2的正三角形,且平面
平面
,
平面
,
.
(1)证明:;
(2)求三棱锥的体积.
设函数
(1)求函数的最小值;
(2)若恒成立,求实数
的取值范围.
已知数列满足
,其中
.
(1)设,求证:数列
是等差数列,并求出
的通项公式
;
(2)设,数列
的前
项和为
,是否存在正整数
,使得
对于
N*恒成立,若存在,求出
的最小值,若不存在,请说明理由.
已知向量,
=
,函数
.
(1)求函数f(x)的解析式及其单调递增区间;
(2)当x∈时,求函数f(x)的值域.