在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为
的考生有
人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数;
(Ⅱ)若等级分别对应
分,
分,
分,
分,
分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为
的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为
的概率.
在中,角A、B、C的对边分别为
.已知
.
(1)若,求
的面积;
(2)设向量,
,且
,求
的值.
(本小题满分10分)选修4—5:不等式选讲
已知a+b=1,对,b∈(0,+∞),
+
≥|2x-1|-|x+1|恒成立,
(Ⅰ)求+
的最小值;
(Ⅱ)求x的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程
已知直线l经过点P(,1),倾斜角α=
,圆C的极坐标方程为
=
cos(θ-
).
(Ⅰ)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;
(Ⅱ)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.
(本小题满分10分)选修4—1:几何证明选讲如图,四边形ACED是圆内接四边形,AD、CE的延长线交于点B,且AD=DE,AB=2AC.
(Ⅰ)求证:BE=2AD;
(Ⅱ)当AC=2,BC=4时,求AD的长.
(本小题满分12分)
已知函数f(x)=-bx+lnx(a,b∈R).
(Ⅰ)若a=b=1,求f(x)点(1,f(1))处的切线方程;
(Ⅱ)设a<0,求f(x)的单调区间;
(Ⅲ)设a<0,且对任意的x>0,f(x)≤f(2),试比较ln(-a)与-2b的大小.