游客
题文

(本小题满分12分)
已知函数f(x)=-bx+lnx(a,b∈R).
(Ⅰ)若a=b=1,求f(x)点(1,f(1))处的切线方程;
(Ⅱ)设a<0,求f(x)的单调区间;
(Ⅲ)设a<0,且对任意的x>0,f(x)≤f(2),试比较ln(-a)与-2b的大小.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD ABC 是底面的内接正三角形, P DO 上一点, PO = 6 6 DO

(1)证明: PA 平面 PBC

(2)求二面角 B - PC - E 的余弦值.

{ a n } 是公比不为1的等比数列, a 1 a 2 a 3 的等差中项.

(1)求 { a n } 的公比;

(2)若 a 1 = 1 ,求数列 { n a n } 的前 n 项和.

已知函数 f ( x ) = a e x - 1 - ln x + ln a

(1)当 a = e 时,求曲线y=fx)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;

(2)若fx)≥1,求a的取值范围.

已知椭圆C x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点M(2,3),点A为其左顶点,且AM的斜率为 1 2

(1)求C的方程;

(2)点N为椭圆上任意一点,求△AMN的面积的最大值.

如图,四棱锥 P- ABCD的底面为正方形, PD⊥底面 ABCD.设平面 PAD与平面 PBC的交线为 l

(1)证明: l⊥平面 PDC

(2)已知 PD= AD=1, Ql上的点,求 PB与平面 QCD所成角的正弦值的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号