(本小题满分10分)选修4—4:坐标系与参数方程
已知直线l经过点P(,1),倾斜角α=
,圆C的极坐标方程为
=
cos(θ-
).
(Ⅰ)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;
(Ⅱ)设l与圆C相交于A,B两点,求点P到A,B两点的距离之积.
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X).
设p:实数x满足,其中
,命题
实数x
满足
(Ⅰ)若且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.
(本小题14分)已知函数.
(1)若,求曲线
在
处切线的斜率;
(2)求的单调区间;
(3)设,若对任意
,均存在
,使得
,求
的取值范围。
(本小题满分12分) 设的极小值为
,其导函数
的图像开口向下且经过点
,
.
(Ⅰ)求的解析式;(Ⅱ)方程
有唯一实数解,求
的取值范围.
(Ⅲ)若对都有
恒成立,求实数
的取值范围.
(本小题满分12分)
已知函数.
(1)若函数在(
,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)是否存在正整数a,使得在(
,
)上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.