游客
题文

给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”.若椭圆C的一个焦点为,其短轴上的一个端点到距离为
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;
(Ⅲ)过椭圆C“伴随圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

D. [选修4-5:不等式选讲](本小题满分10分)
已知是正数,证明:.

C. [选修4-4:坐标系与参数方程](本小题满分10分)
已知直线的参数方程:为参数)和圆C的极坐标方程:,判断直线和⊙C的位置关系.

B. [选修4-2:矩阵与变换](本小题满分10分)
已知二阶矩阵A的属于特征值-1的一个特征向量为,属于特征值3的一个特征向量为,求矩阵A.

A. [选修4-1:几何证明选讲](本小题满分10分)
如图,AB是⊙O的直径,C是⊙O外一点,且AC=AB,BC交⊙O于点D.
已知BC=4,AD=6,AC交⊙O于点E,求四边形ABDE的周长.

(本小题满分16分)
已知等差数列中,,令,数列的前项和为.
(1)求数列的通项公式;
(2)求证:
(3)是否存在正整数,且,使得成等比数列?若存在,求出的值,若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号