某私立学校共有员工160人,其中有任课教师120人,管理人员16人,后勤服务人员24人,为了了解员工的某种情况,要从中抽取一个容量为20的样本.用分层抽样方法抽取样本,写出过程.
如果样本点只有两个(x1,y1)、(x2,y2),那么用最小二乘法估计得到的直线与用两点式求出的直线方程一致吗?试给出证明.
两个具有线性相关关系的变量的一组数据为:
数据 |
1 |
2 |
3 |
… |
n |
变量x |
x1 |
x2 |
x3 |
… |
xn |
变量y |
y1 |
y2 |
y3 |
… |
yn |
将以上数据,以x为自变量,y为因变量,得回归方程为=bx+a;将y为自变量,x为因变量,得回归方程为
=b′y+a′.
定义两个变量的相关关系数r的计算公式为r=,它可表示两个变量线性关系的强弱.
试问r能否用上述两方程中的b,a与b′,a′表示?如能,怎样表示?
假设关于某设备的使用年限x(年)和所支出的维修费y(万元)有如下统计资料:
x |
2 |
3 |
4 |
5 |
6 |
y |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
若由资料知,y对x呈线性相关关系.试求:
(1)线性回归方程;
(2)估计使用年限为10年时,维修费用约是多少?
日常生活中,某些东西所含的热量比较高,对我们的身体有一定的影响,下表给出了不同类型八种饼干的数据,第一列数据表示八种饼干各含热量的百分比,第二列数据表示顾客对八种饼干所给予分数(百分制).
品种 |
所含热量的百分比 |
口味记录 |
1 |
25 |
89 |
2 |
34 |
89 |
3 |
20 |
80 |
4 |
19 |
78 |
5 |
26 |
75 |
6 |
20 |
71 |
7 |
19 |
65 |
8 |
24 |
62 |
(1)作出这些数据的散点图;
(2)求出回归直线;
(3)关于两个变量之间的关系,你能得出什么结论?
(4)为什么人们更喜欢吃位于回归直线上方的饼干而不是下方的饼干?