游客
题文

如图(1),在平面直角坐标系xOy中,抛物线与x轴交于,与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.
(1)抛物线的解析式是       
(2)如图(2),点P是AD上的一个动点,是P关于DE的对称点,连结PE,过F∥PE交x轴于F. 设,求y关于x的函数关系式,并求y的最大值;
(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

先化简,再求值:,其中

解不等式组:

定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”为(0,0)点有1个,即点O.
(1)“距离坐标”为(1,0)点有个;
(2)如图2,若点M在过点O且与直线CD垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD=120°.请画出图形,并直接写出p,q的关系式;
(3)如图3,点M的“距离坐标”为(1,),且∠AOB=30°,求OM的长.

如图,在平面直角坐标系中,点 A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.

(1)求点C的坐标及b的值;
(2)求k的取值范围;
(3)当k为取值范围内的最大整数时,过点B作BE∥x轴,交PQ于点E,若抛物线y=ax2﹣5ax(a≠0)的顶点在四边形ABED的内部,求a的取值范围.

如图1,在□ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若AB=6,,求DG的长.
小米的发现,过点E作交BG于点H(如图2),经过推理和计算能够使问题得到解决.则DG=
如图3,四边形ABCD中,AD∥BC,点E是射线DM上的一点,连接BE和AC相交于点F,若,求的值(用含的代数式表示).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号