椭圆>
>
与直线
交于
、
两点,且
,其中
为坐标原点.
(1)求的值;
(2)若椭圆的离心率满足
≤
≤
,求椭圆长轴的取值范围.
在中,已知
,求边
的长及
的面积S。
某企业利用银行无息贷款,投资400万元引进一条高科技生产流水线,预计每年可获产品利润100万元。但还另需用于此流水线的保养、维修费用第一年10万元,以后每年递增5万元,问至少几年可收回该项投资?(即总利润不小于总支出)
已知等比数列中,
。
(1)求数列的通项公式;
(2)设等差数列中,
,求数列
的前
项和
。
双曲线C:-y2=1,设过A(-3,0)的直线l的方向向量e=(1,k).
(1)当直线l与双曲线C的一条渐近线m平行时,求直线l的方程及l与m的距离;
(2)证明:当k>时,在双曲线C的右支上不存在点Q,使之到达直线l的距离为.
已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为,且过点(4,-).
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:MF1⊥MF2;
(3)求△F1MF2的面积.