我市某校某数学老师这学期分别用两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如下:
(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用表示抽到成绩为86分的人数,求
的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:其中
)
已知中心在原点的椭圆的右焦点为
,离心率为
(1)求椭圆的方程
(2)若直线:
与椭圆
恒有两个不同交点
、
,且
(其中
为原点),求实数
的取值范围
已知定义在(0,+)上的函数
是增函数
(1)求常数的取值范围
(2)过点(1,0)的直线与(
)的图象有交点,求该直线的斜率的取值范围
如图,正四棱柱中,
,点
在
上且
(1)证明:平面
;(2)求二面角
的余弦值
已知函数(
)在
处取得极值
,其中
为常数
(1)求的值;(2)讨论函数
的单调区间
(3)若对任意,
恒成立,求
的取值范围
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲乙两个盒中各任取2球
(1)求取出的4个球均为黑球的概率
(2)求取出的4个球中恰有1个红球的概率
(3)设为取出的4个球中红
球的个数,求
的分布列和数学期望