如图(示意),公路AM、AN围成的是一块顶角为α的角形耕地,其中tanα=-2.在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,km.现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.
(本题满分12分)已知函数,求函数的单调区间与极大值.
(本题满分12分)已知函数,. (1)求函数的值域; (2)求满足方程的的值.
(本题满分12分)在中,分别是所对的边长,且满足. (1)求角的大小; (2)若,的面积为,求证:是等边三角形.
(本题满分10分) 已知函数. (1)求函数的最小正周期; (2)求在上的最大值和最小值.
椭圆的两焦点坐标分别为F1(,0),F2(,0),且椭圆过点P(1,). (1)求椭圆方程; (2)若 A为椭圆的左顶点,作AM⊥AN与椭圆交于两点M、N,试问:直线MN是否恒过x轴上的一个定点?若是,求出该点坐标;若不是,请说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号