如图,已知正四棱锥的底面边长为2,高为
,P是棱SC的中点.
(1)求直线AP与平面SBC所成角的正弦值;
(2)求二面角B-SC-D大小的余弦值;
(3)在正方形ABCD内是否存在一点Q,使得平面SDC?若存在,求PQ的长;若不存在,请说明理由.
在四棱锥中,
,
平面
,
为
的中点,
,
.
(Ⅰ)求四棱锥的体积
;
(Ⅱ)若为
的中点,求证:平面
平面
.
某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,(阴影部分为破坏部分)其可见部分如下,据此解答如下问题:
(Ⅰ)计算频率分布直方图中[80,90)间的矩形的高;
(Ⅱ)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在
之间的概率;
(Ⅲ)根据频率分布直方图估计这次测试的平均分.
在中,角
所对的边分别是
,已知
.
(1)若的面积等于
,求
;
(2)若,
,求
的面积.
设不等式的解集为
,
.
(Ⅰ)证明:;
(Ⅱ)比较与
的大小,并说明理由.
已知曲线的直角坐标方程为
,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
是曲线
上一点,
,将点
绕点
逆时针旋转角
后得到点
,
,点
的轨迹是曲线
.
(Ⅰ)求曲线的极坐标方程.
(Ⅱ)求的取值范围.