设集合,
,
.
(1)若,求实数
的取值范围;
(2)若且
,求实数
的取值范围.
如图所示,、
分别是单位圆与
轴、
轴正半轴的交点,点
在单位圆上,
(
),点
坐标为
,平行四边形
的面积为
.
(Ⅰ)求的最大值;
(Ⅱ)若∥
,求
.
(本小题满分10分)选修4-5:不等式选讲
设都是正实数,求证:
(Ⅰ)
(Ⅱ)
(本小题满分10分)选修4-4:坐标系与参数方程
已知直线的参数方程为
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(Ⅰ)求圆的直角坐标方程;
(Ⅱ)设,直线
与圆
相交于点
,求
.
(本小题满分10分)选修4-1 :几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC.
(Ⅰ)求证:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.
(本小题满分12分)已知函数,其中
为自然对数的底数.
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)若对任意,不等式
恒成立,求实数
的取值范围;
(Ⅲ)试探究当时,方程
解的个数,并说明理由.