在中,角
对的边分别为
,已知
.
(1)若,求
的取值范围;
(2)若,求
面积的最大值.
已知等比数列{an}的前n项和为Sn.
(Ⅰ)若Sm,Sm+2,Sm+1成等差数列,证明am,am+2,am+1成等差数列;
(Ⅱ)写出(Ⅰ)的逆命题,判断它的真伪,并给出证明.
设M是由满足下列条件的函数构成的集合:“①方程
有实数根;②函数
的导数
满足
.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素具有下面的性质:若
的定义域为D,则对于任意
[m,n]D,都存在
[m,n],使得等式
成立”,
试用这一性质证明:方程只有一个实数根;
(III)设是方程
的实数根,求证:对于
定义域中任意的
.
如图,根据指令(γ,θ)(γ≥0,-180°<θ≤180°),机器人在平面上能完成下列动作:先原地旋转角度θ(θ为正时,按逆时针方向旋转θ,θ为负时,按顺时针方向旋转θ),再朝其面对的方向沿直线行走距离γ.
(1)现机器人在平面直角坐标系的坐标原点,且面对x轴正方向.试给机器人下一个指令,使其移动到点(4,4).
(2)机器人在完成该指令后,发现在点(17,0)处有一小球 正向坐标原点作匀速直线滚动.已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令(结果用反三角函数表示).
光线从点A(2,3)射出,若镜面的位置在直线上,反射线经过
B(1,1),求入射光线和反射光线所在直线的方程,并求光线从A到B所走过
的路线长
在△ABC中,已知顶点A(1,1),B(3,6)且△ABC的面积等于3,求顶点C的轨迹方程