为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下列表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
![]() |
|
女生 |
![]() |
|
|
合计 |
|
|
![]() |
已知在全班人中随机抽取
人,抽到喜爱打篮球的学生的概率为
.
(1)请将上表补充完整(不用写计算过程);
(2)能否有﹪的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.
(1)计算甲班7位学生成绩的方差;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班、乙班各一人的概率.
选修4—4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
(
为参数),又以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线的直角坐标方程;
(2)设直线与曲线
方程相交于
,
两点,求
.
设函数,
.
(1)若曲线在点
处的切线与直线
垂直,求
的值;
(2)求函数的单调区间;
(3)若函数有两个极值点
,
,且
,求证:
.
已知抛物线:
的焦点为
,抛物线上的点
到焦点的距离为3,椭圆
:
的一个焦点与抛物线
的焦点重合,且离心率为
.
(1)求抛物线和椭圆
的方程;
(2)已知直线:
交椭圆
于
、
两个不同的点,若原点
在以线段
为直径的圆的外部,求
的取值范围.
如图,在边长为4的菱形中,∠
,点
,
分别是边
,
的中点,
,沿
将△
翻折到△
,连接
,
,
,得到如图2的五棱锥
,且
.
(1)求证:⊥平面
(2)求四棱锥的体积.