如图,设椭圆的左右焦点为,上顶点为,点关于对称,且(1)求椭圆的离心率;(2)已知是过三点的圆上的点,若的面积为,求点到直线距离的最大值.
椭圆+=1上一点P到两焦点距离之积为m,则m最大时求P点坐标.
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上点的最远距离为,求这个椭圆方程,并求椭圆上到点P的距离为的点的坐标.
在面积为1的△PMN中,tan∠PMN=,tan∠MNP=-2,适当建立坐标系,求以M、N为焦点,且过点P的椭圆方程.
求过点P(3,0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程.
椭圆上一点P(2,1)到两焦点F1、F2的距离之和是焦距的两倍,求椭圆的标准方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号