某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图。
(1)这次被调查的同学共有 名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐。据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?
如图,以Rt△ABC的直角边AB为直径的圆O,与斜边AC交于点D,点E是BC边上的中点,连接DE.
(1)DE与圆O相切吗?若相切,请给出证明;若不相切,请说明理由.
(2)若AD,AB的长是方程x2-10x+24=0的两个根,求直角边BC的长.
某商场为了吸引顾客规定,凡购买200元以上物品的顾客均可获奖,可以直接获得购物券10元,也可以参加摸奖.摸奖的具体方法是:从一个装有100个彩球的盒子中任取一球,摸到红球可获100元的购物券,摸到黄球可获50元的购物券,摸到蓝球可获加元的购物券,而摸到白球则不能获奖.已知100个球中,5个红球,10个黄球,20个蓝球,其余均为白球.小明购买200元以上物品,但是没有立刻抽奖.为了弄明白自己获奖的机会的大小,特别在摸奖台旁边观察,下面图表就是小明观察的结果:
问:(1)小明共观察统计了多少顾客?
(2)小明画的条形统计图不完整,请补充完整;
(3)在扇形统计图中,“摸蓝球”所在的扇形圆心角为多少度?
(4)小明经过观察和比较,选择了比较合算的方式.请说明他是直接拿购物券10元,还是参加了摸奖呢?
解方程:
如图,在平面直角坐标系中,已知OA=2,OC=4,⊙M与轴相切于点C,与
轴交于A,B两点,∠ACD=90°,抛物线
经过A,B,C三点.
(1)求证:∠CAO=∠CAD;
(2)求弦BD的长;
(3)在抛物线的对称轴上是否存在点P使ΔPBC是以BC为腰的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
如图,在正方形ABCD中, AB=5,P是BC边上任意一点,E是BC延长线上一点,连接AP,作PF⊥AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG.
(1)求证:∠GCF=∠FCE;
(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;
(3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形,若存在,求出BM的长度,若不存在,说明理由.