设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于,求实数的取值范围.
已知函数. (1)若函数在上是增函数,求实数的取值范围; (2)若函数在上的最小值为3,求实数的值.
(1)用综合法证明:() (2)用反证法证明:若均为实数,且,,求证:中至少有一个大于0
复数=且,对应的点在第一象限,若复数0,z,对应的点是正三角形的三个顶点,求实数的值.
设:,:关于的不等式的解集是空集,试确定实数的取值范围,使得或为真命题,且为假命题。
已知集合, (1)当时,求; (2)若,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号