已知在正项数列{an}中,Sn表示前n项和且2=an+1,数列
的前n项和,
(1)求;
(2)是否存在最大的整数t,使得对任意的正整数n均有总成立?若存在,求出t;若不存在,请说明理由,
(本小题满分12分)
已知等比数列{an}的各项均为正数,且 2a1 +3a2 =1,=9a2a6.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)设 bn=log3a1 +log3a2 +…+ log3an,求的前n项和Tn;
(Ⅲ)在(Ⅱ)的条件下,求使 ≥ (7− 2n)Tn恒成立的实数k 的取值范围.
(本小题满分12分)
已知f(x)=(a∈R),不等式f(x)≤3的解集为{x|−2≤x≤1}.
(Ⅰ)求a的值;
(Ⅱ)若≤k恒成立,求k的取值范围.
(本小题满分12分)
某班50位学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(Ⅰ)求图中 x的值;
(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列和数学期望.
(本小题满分12分)
如图,直三棱柱ABC−A1B1C1中, AC= BC=AA1,D是棱AA1的中点,DC1⊥BD.
(Ⅰ)证明:DC1⊥BC;
(Ⅱ)求二面角A1−BD−C1的大小.
(本小题满分12分)
函数f(x)= sinωxcosωx+sin2ωx+
,其图像相邻两条对称轴之间的距离为
.
(Ⅰ)求ω的值;
(Ⅱ) 若A为△ABC的内角,且f=
,求A的值.