已知直线:
,
:
,求当
为何值时,
与
:(1)平行;(2)相交;(3)垂直.
已知.
当时,解不等式
;
(2)若,解关于
的不等式
.
在△ABC中,分别为内角A,B,C的对边,且
(1)求A的大小;
(2)若,试判断△ABC的形状.
已知等比数列中,
,
,
,
分别为△ABC的三个内角A,B,C的对边,且
.
(1)求数列的公比
;
(2)设集合,且
,求数列
的通项公式.
某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
组别 |
分组 |
回答正确的人数 |
回答正确的人数占本组的概率 |
第1组 |
[15,25) |
5 |
0.5 |
第2组 |
[25,35) |
![]() |
0.9 |
第3组 |
[35,45) |
27 |
![]() |
第4组 |
[45,55) |
![]() |
0.36 |
第5组 |
[55,65) |
3 |
![]() |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价![]() |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销量![]() |
90 |
84 |
83 |
80 |
75 |
68 |
(1)根据上表可得回归直线方程中的
,据此模型预报单价为10元时的销量为多少件?
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入成本)