(本小题满分10分)选修4-5:不等式选讲
已知函数f(x)=|3x+2|
(Ⅰ)解不等式,
(Ⅱ)已知m+n=1(m,n>0),若恒成立,求实数a的取
值范围.
已知椭圆C:的离心率为
,过右焦点F且斜率为1的直线交椭圆C于A、B两点,N为弦AB的中点.
(Ⅰ)求直线ON(O为坐标原点)的斜率;
(Ⅱ)对于椭圆C上任意一点M,试证:对任意的等式
都成立.
某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师父加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为
(I)求徒弟加工2个零件都是精品的概率;
(II)求徒弟加工该零件的精品数多于师父的概率;
(III)设师徒二人加工出的4个零件中精品个数为,求
的分布列与均值E
.
如图1所示,在边长为12的正方形中,点
在线段
上,且
,
,作
,分别交
,
于点
,
,作
,分别交
,
于点
,
,将该正方形沿
,
折叠,使得
与
重合,构成如图2所示的三棱柱
.
(Ⅰ)求证:平面
;
(Ⅱ)求四棱锥的体积;
(Ⅲ)求平面与平面
所成锐二面角的余弦值.
设函数.
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求函数
的最大值和最小值.
(本大题满分10分)是否存在实数,使函数
在闭区间
上的最大值为
?若存在,求出对应的
值;若不存在,请说明理由.