已知定义域为的函数是奇函数.(1)求的值;(2)用定义法证明函数在上是减函数;(3)若对任意的,不等式恒成立,求的取值范围.
已知对任意,都有 (为常数)并且当时, ⑴ 求证:是R上的减函数; ⑵ 若, 解关于m的不等式。
(本小题满分13分)设(为实常数)。 (1)当时,证明:不是奇函数; (2)设是奇函数,求与的值; (3)求(2)中函数的值域。
已知. (1)当,且有最小值2时,求的值; (2)当时,有恒成立,求实数的取值范围.
已知p: ,q: ,若是的必要不 充分条件,求实数m的取值范围。
(本小题满分12分)设是定义在(-∞,+∞)上的函数,对一切均 有,且当时,,求当时,的解析式。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号