甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若
,则该零件为优等品;若
,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
甲零件频数 |
2 |
3 |
20 |
20 |
4 |
1 |
乙零件频数 |
3 |
5 |
17 |
13 |
8 |
4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
(本小题满分13分)已知函数,其中
.
(Ⅰ)判断函数的奇偶性,并说明理由;
(Ⅱ)设=-4,且
对任意
恒成立,求
的取值范围.
((本小题满分12分)已知数列的前
项和为
,
.
(Ⅰ)证明:数列是等比数列;
(Ⅱ)对,设
求使不等式
成立的正整数
的取值范围.
(本小题满分12分)将圆按向量
平移得到
,直线
与
相交于
、
两点,若在
上存在点
,使
求直线
的方程.
(本小题满分12分)最近,李师傅一家三口就如何将手中的10万块钱投资理财,提出了三种方案:
第一种方案:李师傅的儿子认为:根据股市收益大的特点,应该将10万块钱全部用来买股票. 据分析预测:投资股市一年可能获利40%,也可能亏损20%.(只有这两种可能),且获利的概率为.
第二种方案:李师傅认为:现在股市风险大,基金风险较小,应将10万块钱全部用来买基金. 据分析预测:投资基金一年后可能获利20%,可能损失10%,也可能不赔不赚,且这三种情况发生的概率分别为.
第三种方案:李师傅妻子认为:投入股市、基金均有风险,应该将10万块钱全部存入银行一年,现在存款年利率为4%,存款利息税率为5%.
针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.
(本小题满分12分)
设锐角三角形的内角
的对边分别为
,且
.
(Ⅰ)求的大小;
(Ⅱ)求的取值范围.