某班共有24人参加同时开设的数学兴趣小组和物理兴趣小组,其中参加数学兴趣小组的有6名女生,10名男生;参加物理兴趣小组的有3名女生,5名男生,现采用分层抽样方法从两组中抽取3人.
(1)求抽取的3人中恰有一名女生来自数学兴趣小组的概率;
(2)记X表示抽取3人中男生的人数,求X的分布列和数学期望.
设函数(
为常数)
(Ⅰ)=2时,求
的单调区间;
(Ⅱ)当时,
,求
的取值范围
已知椭圆的右焦点为
,上顶点为B,离心率为
,圆
与
轴交于
两点
(Ⅰ)求的值;
(Ⅱ)若,过点
与圆
相切的直线
与
的另一交点为
,求
的面积
如图,四边形是正方形,
,
,
,
(Ⅰ)求证:平面平面
;
(Ⅱ)求三棱锥的高
下表是某单位在2013年1—5月份用水量(单位:百吨)的一组数据:
月份![]() |
1 |
2 |
3 |
4 |
5 |
用水量![]() |
4 5 |
4 |
3 |
2 5 |
1 8 |
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0 05,视为“预测可靠”,通过公式得,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率
参考公式:回归直线方程是:,
在中,角
所对的边分别为
,已知
,
(Ⅰ)求的大小;
(Ⅱ)若,求
的取值范围.