(本小题满分12分)已知函数.
(1)若函数的定义域和值域均为
,求实数
的值;
(2)若在区间
上是减函数,且对任意的
,总有
,求实数
的取值范围.
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
已知不等式的解集是
.
(1)求a,b的值;
(2)解不等式(c为常数) .
已知函数.
(1)若,求曲线
在点
处的切线方程;
(2)讨论函数的单调性.
点P为圆上一个动点,M为点P在y轴上的投影,动点Q满足
.
(1)求动点Q的轨迹C的方程;
(2)一条直线l过点,交曲线C于A、B两点,且A、B同在以点D(0,1)为圆心的圆上,求直线l的方程。
M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作。
(I)求男生成绩的中位数及女生成绩的平均值;
(II)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?