已知函数f (t)=log2(2-t)+的定义域为D.
(1)求D;
(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
(本小题满分12分)椭圆:
的离心率为
,长轴端点与短轴端点间的距离为
.
(1)求椭圆的方程;
(2)设过点的直线
与椭圆
交于
两点,
为坐标原点,若
为直角三角形,求直线
的斜率.
(本小题满分12分)在如图所示的空间几何体中,平面平面
,
与
是边长为
的等边三角形,
,
和平面
所成的角为
,且点
在平面
上的射影落在
的平分线上.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)甲、乙两人参加某种选拔测试.在备选的道题中,甲答对其中每道题的概率都是
,乙能答对其中的
道题.规定每次考试都从备选的
道题中随机抽出
道题进行测试,答对一题加
分,答错一题(不答视为答错)减
分,至少得
分才能入选.
(1)求乙得分的分布列和数学期望;
(2)求甲、乙两人中至少有一人入选的概率.
(本小题满分12分)公差不为零的等差数列中,
且
成等比数列。
(1)求数列的通项公式;
(2)设,求数列
的通项公式
附加题:本题满分10分.已知是平面内两个定点,且
,若动点
与
连线的斜率之积等于常数
,求点
的轨迹方程,并讨论轨迹形状与
值的关系.