已知椭圆C1:+
=1(0<a<
,0<b<2)与椭圆C2:
+
=1有相同的焦点.直线L:y=k(x+1)与两个椭圆的四个交点,自上而下顺次记为A、B、C、D.
(Ⅰ)求线段BC的长(用k和a表示);
(Ⅱ)是否存在这样的直线L,使线段AB、BC、CD的长按此顺序构成一个等差数列.请说明详细的理由.
山东省实验中学为了活跃师生的课外文化生活,在2015年3月中旬举办了一次知识竞赛,经过层层筛选,最后五名同学进入了总决赛.在进行笔答题知识竞赛中,最后一个大题是选做题,要求参加竞赛的五名选手从2道题中选做一道进行解答,假设这5位选手选做每一题的可能性均为,求
(Ⅰ)其中甲乙2位选手选做同一道题的概率.
(Ⅱ)设这5位选手中选做第1题的人数为x,求x的分布列及数学期望.
设函数,其中向量
,
,
.
(Ⅰ)求函数的最大值和单调递增区间;
(Ⅱ)将函数的图象沿x轴进行平移,使平移后得到的图象关于坐标原点成中心对称,如何进行平移使其平移长度最小?
(本小题满分14分)已知函数在
点处的切线与直线
垂直,在
处的切线与直线
平行.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)若的图象与x轴有且只有3个交点,求b的取值范围.
(本小题满分13分)已知椭圆的上、下焦点分别是M、N, 点P为坐标平面内的动点,满足
,
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)在直线上是否存在点
,过该点作曲线C的两条切线,切点分别为B、C,使得
?若存在,求出该点坐标;若不存在,试说明理由.
(本小题满分12分)如图,三棱柱ABC—A1B1C1中,侧面ACC1A1是的菱形,且与底面ABC垂直,AC=CB=2,且AC⊥CB.
(Ⅰ)求证:AC1⊥面A1BC;
(Ⅱ)求直线A1B与面ABC所成角的正切值;
(Ⅲ)求二面角B—A1A—C的正切值.