如图,多边形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD=2,AB=BC=1,沿直线AD将△ADE折起至△ADP的位置,连接PB,BC,构成四棱锥P-ABCD,使得PB=.点O为线段AD的中点,连接PO.(1)求证:PO⊥平面ABCD;(2)求二面角B-PC-D的大小的余弦值.
已知函数。 (Ⅰ)设,讨论的单调性; (Ⅱ)若对任意恒有,求的取值范围。
设数列的前项的和, (Ⅰ)求首项与通项; (Ⅱ)设,,证明:.
在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求: (Ⅰ)点M的轨迹方程;(Ⅱ)的最小值。
1)设函数,求的最小值; (2)设正数满足, 求证
数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (1)求数列的通项公式; (2)若b=a4(), B是数列{b}的前项和, 求证:不等式 B≤4B,对任意皆成立. (3)令
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号