(本小题满分12分)三角形的三个顶点是,
,
.
(1)求AB边的中线所在直线的方程;
(2)求BC边的高所在直线的方程;
(3)求直线与直线
的交点坐标.
(本小题满分12分)为了宣传今年10月在某市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如下图表所示:
(Ⅰ)分别求出a,x的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
(本小题满分12分)已知函数.
(1)求的值;
(2)求函数的最小正周期及单调递减区间.
已知,函数
,其中
.
(Ⅰ)当时,求
的最小值;
(Ⅱ)在函数的图像上取点
,记线段PnPn+1的斜率为kn ,
.对任意正整数n,试证明:
(ⅰ);
(ⅱ).
如图,实线部分的月牙形公园是由圆上的一段优弧和圆
上的一段劣弧围成,圆
和圆
的半径都是
,点
在圆
上,现要在公园内建一块顶点都在圆
上的多边形活动场地.
(Ⅰ)如图甲,要建的活动场地为△,求活动场地的最大面积;
(Ⅱ)如图乙,要建的活动场地为等腰梯形,求活动场地的最大面积;
如图,点P(0,−1)是椭圆C1:(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)求△ABD面积取最大值时直线l1的方程.