(本小题满分12分)为了宣传今年10月在某市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如下图表所示:
(Ⅰ)分别求出a,x的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
如图, 四棱柱
的底面
是正方形,
为底面中心,
平面
,
.
(Ⅰ) 证明:
平面
;
(Ⅱ) 求平面
与平面
的夹角
的大小.
设
是公比为
的等比数列.
(Ⅰ) 推导
的前
项和公式;
(Ⅱ) 设
, 证明数列
不是等比数列.
已知向量
, 设函数
.
(Ⅰ) 求
的最小正周期.
(Ⅱ) 求
在
上的最大值和最小值.
在平面直角坐标系
中,已知椭圆
的中心在原点
,焦点在
轴上,短轴长为2,离心率为
.
(I)求椭圆
的方程;
(II)
为椭圆
上满足
的面积为
的任意两点,
为线段
的中点,射线
交椭圆
与点
,设,求实数
的值.
已知函数 .
(Ⅰ)设
,求
的单调区间;
(Ⅱ) 设
,且对于任意
,
.试比较
与
的大小.