(满分12分)假设关于某设备的使用年限和所支出的维修费用
(万元)有如下的统计资料:
使用年限![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
维修费用![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
若由资料知对
呈线性相关关系。
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程的回归系数
,
.
(3)估计使用年限为年时,维修费用是多少?
,
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点
的直线的参数方程为:
(t为参数),直线与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线的普通方程;
(Ⅱ)若成等比数列,求a的值.
已知在中,D是AB上一点,
的外接圆交BC于E,
.
(Ⅰ)求证:;
(Ⅱ)若CD平分,且
,求BD的长.
已知,
(Ⅰ)当时,若
在
上为减函数,
在
上是增函数,求
值;
(Ⅱ)对任意恒成立,求
的取值范围.
椭圆过点
,离心率为
,左、右焦点分别为
,过
的直线交椭圆于
两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当的面积为
时,求直线的方程.
生产,
两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
元件![]() |
8 |
12 |
40 |
32 |
8 |
元件![]() |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计元件、元件
为正品的概率;
(Ⅱ)生产一件元件,若是正品可盈利50元,若是次品则亏损10元;生产一件元件
,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下
(i)求生产5件元件所获得的利润不少于300元的概率;
(ii)记为生产1件元件
和1件元件
所得的总利润,求随机变量
的分布列和期望.