某省对省内养殖场“瘦肉精”使用情况进行检查,在全省的养殖场随机抽取M个养殖场的猪作为样本,得到M个养殖场“瘦肉精”检测阳性猪的头数,根据此数据作出了频率分布表和频率分布直方图如下:
分组 |
频数 |
频率 |
![]() |
10 |
0.25 |
![]() |
24 |
n |
![]() |
m |
P |
![]() |
2 |
0.05 |
合计 |
M |
1 |
(1)求出表中M,P以及图中a的值.
(2)若该省有这样规模的养殖场240个,试估计该省“瘦肉精”检测呈阳性的猪的头数在区间内的养殖场的个数.
(3)在所取样本中,出现“瘦肉精”呈阳性猪的头数不少于20头的养殖场中任选2个,求至多一个养殖场出现“瘦肉精”阳性猪头数在区间内的概率.
某批数量较大的商品的次品率是5%,从中任意地连续取出10件,为所含次品的个数,求
.
分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数
服从二项分布,由公式
可得解.
有n把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.
分析:求时,由题知前
次没打开,恰第k次打开.不过,一般我们应从简单的地方入手,如
,发现规律后,推广到一般
已知f(x)在(-1,1)上有定义,f()=-1,且满足x,y∈(-1,1)有f(x)+f(y)=f(
)
⑴证明:f(x)在(-1,1)上为奇函数;
⑵对数列x1=,xn+1=
,求f(xn);
⑶求证
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.
⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:<m<1;
⑵若|x1|<2且|x1-x2|=2,求b的取值范围.
已知双曲线x2-3y2=3的右焦点为F,右准线为l,以F为左焦点,以l为左准线的椭圆C的中心为A,又A点关于直线y=2x的对称点A’恰好在双曲线的左准线上,求椭圆的方程.