选修4﹣2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量和特征值λ2=2及对应的一个特征向量
,试求矩阵A.
(本小题满分15分)已知矩形纸片ABCD中,AB=6cm,AD=12cm,将矩形
纸片的右下角折起,使得该角的顶点B落在矩形的边AD上,且折痕MN的
端点M, N分别位于边AB, BC上,设∠MNB=θ,sinθ=t,MN长度为l.
(1)试将l表示为t的函数l=f (t);
(2)求l的最小值.
(本小题满分15分)如图,已知椭圆:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线
于点M,N为
的中点.
(1)求椭圆的方程;
(2)证明:Q点在以为直径的圆
上;
(3)试判断直线QN与圆的位置关系.
(本小题满分14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,
∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥;
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.
(本小题满分14分)已知锐角中的三个内角分别为
.
(1)设·=·,求证:是等腰三角形;
(2)设向量=(2sinC, -), =(cos2C, 2cos2 -1), 且∥, 若sinA=,求sin(-B)的值.
(本小题满分14分)
已知数列,
满足
,其中
.
(Ⅰ)若,求数列
的通项公式;
(Ⅱ)若,且
.
(ⅰ)记,求证:数列
为等差数列;
(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项
应满足的条件.