某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时, 租赁公司的月收益最大,最大月收益是多少?
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本
(万元)与年产量
(吨)之间的函数关系式可以近似地表示为
,已知此生产线年产量最大为210吨.
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
(本题共2小题,每小题7分,满分14分)设函数
的图象为
、
关于点A(2,1)的对称的图象为
,
对应的函数为
.
(1)求函数
的解析式;
(2)若直线
与
只有一个交点,求
的值并求出交点的坐标
(本题共2小题,每小题6分,满分12分)
已知
,且
(1)若
,求
;
(2)若
,求实数
的取值范围.
抛物线
上纵坐标为
的点
到焦点的距离为2.
(Ⅰ)求
的值;
(Ⅱ)如图,

为抛物线上三点,且线段
,
,
与
轴交点的横坐标依次组成公差为1的等差数列,若
的面积是
面积的
,求直线
的方程.
已知函数
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意
恒成立,求实数
的取值范围.