(本小题满分12分)定义在上的函数
满足下面三个条件:
①对任意正数,都有
;
②当时,
;
③.
(1)求和
的值;
(2)试用单调性定义证明:函数在
上是减函数;
(3)求满足的
的取值集合.
已知椭圆的离心率
,短轴长为
.
(Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、
轴正半轴的交点分别为
、
,经过点
且斜率为
的直线
与椭圆交于不同的两点
、
.是否存在常数
,使得向量
共线?如果存在,求
的值;如果不存在,请说明理由.
(本小题满分12分)如图,四边形ABCD是边长为1的正方形, ,
,且MD=NB=1,E为BC的中点 (1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上找点S,使得ES平面AMN,并求线段AS的长;
(本小题满分12分)某批发市场对某商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量 |
2 |
3 |
4 |
频数 |
20 |
50 |
30 |
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(2)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元),若以上
述频率作为概率,且各周的销售量相互独立,求
的分布列和数学期望.
(本小题满分12分)已知等差数列为递增数列,且
是方程
的两根,数列
的前
项和
;
(1)求数列和
的通项公式;
(2)若,
为数列
的前n项和,证明:
已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)若 对,方程
有2个不等实根,
;
(3)在(1)的条件下,是否存在m∈R,使f(m)=-a成立时,f(m+3)为正数,若
存在,证明你的结论,若不存在,说明理由.