如图所示,已知AB为⊙O的直径,CD是弦,且ABCD于点E.连接AC、OC、BC.
(1)求证:ACO=
BCD.
(2)若EB=8cm,CD=24cm,求⊙O的直径.
如图所示,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数的图象在第二象限内交于点B,过点B作BD⊥x轴于点D,OD=2.
(1)求直线AB的解析式;
(2)若点P是线段BD上一点,且△OPB的面积等于3,求点P的坐标.
如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.
(1)解不等式组:.
(2)计算:
(本题14分)如图,在平面直角坐标系中,点A的坐标为(3,0),直线l与x轴正半轴夹角为30°,点B为直线l上的一个动点,延长AB至点C,使得AB=BC,过点C作CD⊥x轴于点D,交直线l于点F,过点A作AE∥l交直线CD于点E.
(1)若点B的横坐标为6,则点C的坐标为(______,_____),DE的长为;
(2)若点B的横坐标大于3,则线段CF的长度是否发生改变?若不变,请求出线段CF的长度;若改变,请说明理由;
(3)连结BE,在点B的运动过程中,以OB为直径的⊙P与△ABE某一边所在的直线相切,请求出所有满足条件的DE的长.
(本题12分)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.
采购数量(件) |
1 |
2 |
… |
A产品单价(元/件) |
1480 |
1460 |
… |
B产品单价(元/件) |
1290 |
1280 |
… |
(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.