(本小题满分15分)如图,已知抛物线:
,过焦点
斜率大于零的直线
交抛物线于
、
两点,且与其准线交于点
.
(Ⅰ)若线段的长为
,求直线
的方程;
(Ⅱ)在上是否存在点
,使得对任意直线
,直线
,
,
的斜率始终成等差数列,若存在求点
的坐标;若不存在,请说明理由.
在平面直角坐标系中,动点
到两点
、
的距离之和等于4.设点
的轨迹为
.
(1)求曲线的方程;
(2)设直线与
交于
、
两点,若
,求
的值.
如图,在直三棱柱中-A BC中,AB
AC, AB=AC=2,
=4,点D是BC的中点.
(1)求异面直线与
所成角的余弦值;
(2)求平面与
所成二面角的正弦值.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是
,且各题答对与否相互独立.用
表示张同学答对题的个数,求
的分布列和数学期望.
已知等差数列的前
项和为
,
,
,
(1)求数列的通项公式;
(2)若,求数列
的前100项和.
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
由散点图可知,销售量与价格
之间有较好的线性相关关系,其线性回归直线方程是;
(1)求的值;
(2)预计在今后的销售中,销量与单价仍然服从线性回归直线方程中的关系,且该产品的成本是每件4元,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入一成本)