已知在△ABC中,AB=,AC=
,BC=3.
(1)如图,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;
(2)如图,是由100个边长为1的小正方形组成的10×10的正方形网格, 设顶点在这些小正方形顶点的三角形为格点三角形.
①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);
②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).
如图,一艘船由 港沿北偏东 方向航行 至 港,然后再沿北偏西 方向航行 至 港.
(1)求 , 两港之间的距离(结果保留到 ,参考数据: , ;
(2)确定 港在 港的什么方向.
某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,求该工厂原来平均每天生产多少台机器?
已知直线 分别交 轴、 轴于 、 两点,抛物线 经过点 ,和 轴的另一个交点为 .
(1)求抛物线的解析式;
(2)如图1,点 是抛物线上的动点,且在第三象限,求 面积的最大值;
(3)如图2,经过点 的直线交抛物线于点 、 ,连接 、 分别交 轴于点 、 ,求 的值.
备注:抛物线顶点坐标公式 ,
如图,在矩形 中, , ,点 是 边上的点, ,连接 , 交于点 .
(1)求证: ;
(2)连接 ,求 的值;
(3)连接 交 于点 ,求 的值.
端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时 千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程 , 与时间 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:
(1)图中 点的坐标是 ,题中 ,甲在途中休息 ;
(2)求线段 的解析式,并写出自变量 的取值范围;
(3)两人第二次相遇后,又经过多长时间两人相距 ?